REVISED
SYSTEM SAFETY, SECURITY AND OPERATIONS COMMITTEE APRIL 12, 2018

SUBJECT: METRO RAIL CAPACITY STUDY (MOTION 2017-0922 RESPONSE)

ACTION: RECEIVE AND FILE

RECOMMENDATION

RECEIVE AND FILE report on Metro Rail capacity in response to Board Motion 2017-0922.

ISSUE

On January 25, 2018, the Board of Directors (Board) approved Motion \#2017-0922 (Metro Rail Capacity Study) under Item 47, requesting staff to analyze current ridership as a percentage of maximum capacity for passengers at all existing rail stations during weekdays, weekends, peak, and off-peak hours. This report responds to the motion's request.

While there is generally capacity on the rail network during the non-peak periods, during the peak hours, trains on all rail lines meet and exceed the maximum capacity on a trip by trip basis as ridership demand pulses to the line from connecting bus and rails service, work shift start and end times, school bell times, etc.

DISCUSSION

Detailed rail ridership is collected continuously through a series of riding checks. The number of checks performed on a monthly basis is only large enough to permit estimation of ridership by line and day type. On an annual basis these checks can be aggregated to provide a more complete picture of ridership by station, direction, and time of day. The most recent annual ride check compilation spans FY2017.

Unlike the Metro bus system, rail cars are not all presently equipped with Automated Passenger Counters (APC's). APC's are provided as part of the current P3010 light rail vehicle (LRT) car order, however, staff is working to finalize the process and methodology for data capture and validation, which will include a one year FTA testing and approval process. Similarly, a retrofit of the P2000 LRV will incorporate APC's. However, delivery of the retrofitted P2000 LRVs will not begin until the start of 2020, with FTA testing and validation which requires an additional year. The planned procurement of
heavy rail vehicles (HRV) to replace the existing fleet and provide service for the extended Purple Line will provide APC's that are expected to be fully functional within five years from now.

As a result, the data used in this report was based on the full set of FY 2017 checks. Capacity is defined in the adopted Transit Service Policy, which states that maximum capacity (seated and standing) of a light rail line equals 175% of the seated capacity, or a load factor of 1.75. The maximum capacity of a heavy rail line equals 230% of the seated load, or 2.3 load factor. The load factor is higher for heavy rail as the seating configuration provides more space for standees. These capacity standards balance the goals of operating efficiency with customer comfort and the ability to periodically exceed the standard without passing up customers.

The analysis of ridership and capacity is presented in two attachments to this report. Attachment B shows ridership and capacity for each rail line and station, segmented by time period and day of week. The time periods shown are the highest passenger demand hours of each type of service (peak, off peak, Saturday and Sunday) for each direction of travel. Each chart shows the maximum capacity of all trains operated during that hour (solid line) and the number of total seats on those trains (dashed line). The hourly passenger load at each station is shown by a vertical bar with an extension of the bar showing higher loads experienced during the peak 20 minutes of demand.

Since Attachment B averages the passenger loads on board at each station during the time period, it masks the true variability in loads from trip to trip. For example, a train that carries 50% seated load may be followed by a train that carries 150% of seated load, which would result in an average of 100% seated load on each of the two trips. As a result, the variation in loads from train to train due to the pulsing of ridership arriving to each line based on connections from other bus and rail services, work and shift end times, school bell times, etc. are not represented. Therefore, Attachment C provides a detailed look at each trip's maximum ridership load factor (observed passengers per seats) for all weekday trips checked. A load factor of 1.00 represents the seated capacity of a train (shown with a dashed line), and a load factor of 1.75 (2.30 for the Red/Purple Line) represents the total maximum capacity of a train (shown with a solid line).

The charts indicate there is significant variation in demand from train to train within any specified hour due to the pulsing of ridership discussed above, with some observed trains exceeding the policy capacity. Table 1 summarizes the number of trips at each level of capacity from less than seated loads (load factor under 1.0) to over maximum capacity (load factor above 1.75 for LRT and 2.30 for HRT).

Table 1
Observed Number of Trips within Each Load Factor Range

	Peak	Directio	1.0 or Less	1.0 to	1.25 to	1.50 to	Over
		1.50	1.75	1.75			
Blue Line	AM	North	2	3	4	2	
	PM	South		4	2	2	2
Green Line	PM	East	3	4	5	4	
	AM	West	9	8			
Gold Line	PM	North				6	3
Expo Line	AM	South		1	4	2	1
	PM	East		1	3		7

	Peak	Directio	1.0 or Less	1.0 to	1.43 to	1.87 to	Over
	1.43	1.87	2.30	2.30			
Red/Purple Lin	PM	East	1	1	7	2	1
	PM	West	1	4	1	6	

FINANCIAL IMPACT

Receive and File of this report would have no financial impact to the agency.

ATTACHMENTS

Attachment A - Motion 2017-0922 Metro Rail Capacity Study
Attachment B - Rail Ridership Data in Relation to Service Capacity
Attachment C - Train By Train Loading in Relation to Train Capacity
Prepared by: Jaclyn Luu, Senior Transportation Planner (213) 922-4562
Dana Woodbury, Manager Transportation Planning (213) 922-4207
Gary Spivack, Deputy Executive Officer (213) 418-3432
Conan Cheung, Senior Executive Officer (213) 418-3034
Reviewed by: James T. Gallagher, Chief Operations Officer, (213) 418-3108

REGULAR BOARD MEETING

JANUARY 25, 2018

Motion by:
Fasana, Barger, Dupont-Walker, and Solis
\section*{Metro Rail Capacity Study}

Ridership on Metro's lines continues to grow. Staff has continued to add capacity to Metro's lines by adding cars and increasing service frequency.

Passenger capacity varies considerably by line and by station. Metro needs to understand how much capacity is available on rail lines as development intensifies and demand for service increases.

SUBJECT: MOTION BY FASANA, BARGER, DUPONT-WALKER AND SOLIS

Metro Rail Capacity Study

WE THEREFORE MOVE that Metro provide an analysis of current ridership as a percentage of maximum capacity for passengers at all existing rail stations during weekdays, weekends, on -peak, and off-peak hours and report the results to the Board at the April 2018 meetings.

Metro Rail Capacity Study

Overview

- Metro Rail Capacity Study Motion (January 2018)
- Analyze current ridership as a percentage of maximum capacity for passengers at all existing rail stations during:
> Weekdays
$>$ Weekends
$>$ On-Peak Hours
> Off-Peak Hours

Data Collection

- Rail ridership data collected through manual counts and reported on a monthly basis at a line and day type level.
- Sampling methodology requires one year to collect enough data to generate station and time period level ridership. (FY17 most current)

Data Analysis

- Capacity (seated and standing) of a light rail line equals 175% of the seated capacity, or a load factor of 1.75. The maximum capacity of a heavy rail line equals 230% of the seated load, or 2.3 load factor.
- Capacity generally exists on the rail network during midday and weekends, with the exception of the Expo and Gold Lines when averaging all trips within a one hour and a 20 minute time slice.
- Standing capacity generally exists on all rail lines during peak periods in the peak direction when averaging trips.
- However, significant ridership variation on an individual trip basis due to "pulsing" of ridership, with many trips exceeding max capacity during the peak period.

Findings - Weekday Peak Hours

Metro Blue Line

Metro Blue Line
Weekday Southbound 5-6pm

Metro Blue Line Weekday Northbound Load Ratios

Metro Blue Line
Weekday Southbound Load Ratios

Findings - Weekday Peak Hours

Metro Green Line

Metro Green Line
Weekday Westbound Load Ratios

Findings - Weekday Peak Hours

Metro Gold Line

Metro Gold Line
Weekday Southbound 7-8am

Metro Gold Line Weekday Northbound Load Ratios

Findings - Weekday Peak Hours

Metro Expo Line

Metro Expo Line
Weekday Westbound Load Ratios

Findings - Weekday Peak Hours

Metro Red \& Purple Line

Findings

- The findings indicate there is significant variation in demand from train to train within any specified hour due to the pulsing of ridership, with some observed trains exceeding the policy capacity.
- The table summarizes the number of train trips observed at each level of capacity from less than seated loads (load factor under 1.0) to over maximum capacity (load factor above 1.75 for LRT and 2.30 for HRT).

Line	Direction	Peak Hour	1.0 or Less	$\begin{array}{\|l} 1.0 \text { to } \\ 1.25 \end{array}$	$\begin{aligned} & 1.25 \text { to } \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.50 \text { to } \\ & 1.75 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 1.75 \end{aligned}$	Total TrainTrips
Blue Line	North	AM	2	3	4	2		11
	South	PM		4	2	2	2	10
Green Line	East	PM	3	4	5	4		16
	West	AM	9	8				17
Gold Line	North	PM				6	3	9
	South	AM		1	4	2	1	8
Expo Line	East	PM		1	3		7	11
	West	AM	2	3	2	2	1	10

Line	Direction	Peak Hour	1.0 or Less	1.0 to $\mathbf{1 . 4 3}$	1.43 to $\mathbf{1 . 8 7}$	1.87 to 2.30	Over 2.30	Total Train Trips
	East	PM	1	1	7	2	1	12
	West	PM	1	4	1	6		12

Metro

REVISED - ATTACHMENT B

Rail Ridership Data in Relation to Service Capacity

METRO BLUE LINE
Weekday Peak Hours

METRO BLUE LINE

Weekday Off Peak Hours

METRO BLUE LINE
Saturdays

METRO BLUE LINE
Sundays

METRO GREEN LINE
Weekday Peak Hours

METRO GREEN LINE
Sundays

METRO GOLD LINE
Weekday Peak Hours

METRO GOLD LINE

Weekday Off Peak Hours

METRO GOLD LINE
Saturdays

METRO GOLD LINE
Sundays

METRO EXPO LINE

Weekday Off Peak Hours

METRO RED/PURPLE LINES
Weekday Peak Hours

METRO RED/PURPLE LINES
Saturdays

METRO RED/PURPLE LINES
Sundays

REVISED - ATTACHMENT C

Train By Train Loading in Relation to Train Capacity

METRO BLUE LINE
WEEKDAY LOAD RATIOS

METRO BLUE LINE
WEEKEND LOAD RATIOS

Metro Blue Line
Saturday Southbound Load Ratios

METRO GREEN LINE
WEEKDAY LOAD RATIOS

METRO GREEN LINE
WEEKEND LOAD RATIOS

Metro Green Line
Saturday Westbound Load Ratios

METRO GOLD LINE
WEEKDAY LOAD RATIOS

METRO GOLD LINE
WEEKEND LOAD RATIOS

METRO EXPO LINE
WEEKDAY LOAD RATIOS

METRO EXPO LINE
WEEKEND LOAD RATIOS

Metro EXPO Line
Saturday Westbound Load Ratios

METRO RED/PURPLE LINE WEEKDAY LOAD RATIOS

METRO RED/PURPLE LINE WEEKEND LOAD RATIOS

Metro Red \& Purple Line Saturday Westbound Load Ratios

